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A Quasi-Closed Form Expression for the Conductor

Loss of CPW Lines, with an Investigation

of Edge Shape Effects
Christopher L. Holloway, Member, IEEE, and Edward F. Kuester, Member, IEEE

Abstract— In previous work, we used a matched asymptotic

technique to investigate the fields near an edge of a tinitely

conducting strip with nonzero tldckness. It was demonstrated
that with this asymptotic solution of the fields, the power loss
in the region local to the edge could be determined accurately. In

this paper, we will show how the accurate representation of the
power loss can be used to obtain a closed form expression for the

attenuation constant due to conductor loss of coplanar wavegnide

(CPW) structures. This expression is valid for an arbitrarily

shaped edge and any conductor thickness. Results obtained with
this expression are compared to and closely agree with both

experimental results and other techniques found in the literature.

We also investigated conductors with different edge shapes (45°
and 90° edges) to explore their effect on the attenuation constant

(or 10ss) of CPW structures.

1, INTRODUCTION

v ARIOUS TECHNIQUES have been used to calculate

the conductor loss in monolithic microwave integrated

circuits (MIMIC’s) [1 ]–[20]. These techniques range from

quasi-analytical, like Wheeler’s incremental inductance rule, to

full numerical approaches, such as mode matching, method of

moments (MOM), and finite elements. These numerical tech-

niques are capable of high accuracy but are computationally

intensive and hence do not lend themselves to ready use in

design. Instead, closed-form expressions are desirable for this

purpose.

Traditionally, Wheeler’s incremental inductance rule [1]

has been used to evaluate the attenuation constant of pla-

nar microwave transmission lines, as in the work of Pucel,

Mass& and Hartwig [2] for microstrip, For a wide range of

applications, this technique works well. However, if the ratio

~ is small (where 6 is the skin depth and t is the thickness

of the conductor) or comparable to 1, then the Wheeler rule

breaks down and gives poor results. This is traceable to the

fact that the Leontovich surface impedance boundary condition

[21], on which the validity of the Wheeler rule depends, is no

longer valid. Moreover, if the edges of the strip conductor are

not exactly rectangular in shape, but are instead trapezoids

with 60° or 70° angles (which often occurs when common

fabrication techniques are utilized), then the results of Pucel
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Fig. 1. Geometry of a CPW line.
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Fig. 2. Geometry of rut infinitely thin CPW line.

et al. (obtained assuming a rectangular edge) are also no longer

valid. In this case, full numerical techniques are currently the

only option for computing the loss.

Consider the CPW (coplanar waveguide) line shown in

Fig. 1. It is tempting to determine the conductor loss of this

line by using standard perturbation methods for computing

wall loss. Assuming that the strips are infinitely thin, an

approximate current density on the strips could be obtained

and then used to get an expression for the attenuation constant.

This expression involves an integral over the top and bottom

portions of the strip conductors (Fig. 2)

%op+bd,om(;)a’ = 2Z0
(1)

where J is the approximate current density on the strip, 1 is

the total current on the center conductor, R. is the surface

resistance of the strip conductor, and ZO is the characteristic

impedance of the CPW. However, because the current on an

infinitely thin, perfectly conducting strip diverges as l/fi

(where r is the distance from the nearest edge), the integration
of \JI 2 would result in a logarithmically divergent integral and

this result would be useless.

Lewin [22] and Vairtshtein and Zhurav [23] indepen-

dently developed a method to avoid this difficulty. In the

Lewin/Vainshtein procedure, the loss is approximated by
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carrying out the integration in (1) not to the edges, but to some

distance away from the edges of the strip. This distance is

chosen so that the resulting power loss near an edge calculated

in this way agrees with that of the actual edge. The value of

this stopping distance is a function only of the local edge

geometry: the strip thickness and the shape of the edge.

In the work by Lewin/Vainshtein and in later work by Bar-

sotti, Kuester, and Dunn [24], the stopping distance (A) was

determined by evaluating the power loss (with the Leontovich

approximation) from an integration of the current distribution

(J corresponds to a perfectly conducting strip of the actual

edge shape and nonzero thickness) around the contour of the

edge. This was then equated to the power loss found from

the stopping distance method using the current distribution

of a zero thickness perfect conductor. The problem with this

approach (which determines the “standard” Lewin/Vainshtein

stopping distance) is that because it relies on the Leontovich

approximation, it is valid only for skin depths very small

compared to strip thickness (that is, at very high frequencies).

In previous work [25] and [26], it has been demonstrated

that with a matched-asymptotic expansion technique, a modi-

fied Lewin/Vainshtein stopping distance (A) can be obtained.

This stopping distance can be used for any ratio of strip

thickness to skin depth and for any given edge shape, if proper

modification to the impedance condition at the strip is made.

It was also shown [25] and [26], that once A is determined

for a given edge shape and as a function of t/6, a closed-form

expression for the conductor loss of a microstrip line could

be obtained.

In this investigation, we extend the previous work by

deriving a quasi-closed form expression for the attenuation

constant of a CPW line. This paper is organized as follows:

after the introduction, Section II presents a derivation of

the attenuation constant. There, we compare our results to

experimental results, numerical results, and to results based on

wall loss perturbation approaches. In Section IV, the effect of

different edge shapes on the conductor loss is investigated. The

last section discusses the ranges within which our quasi-closed

form expression is valid.

II. DERIVATION OF THE QUASI-CLOSED

Fop&t EXPRESSION FOR CONDUCTOR Loss

In [25] and [26], it was demonstrated that with a standard

wall-loss perturbation analysis, the change in the propagation

constant due to conducting walls for a planar circuit is simply

1
~.–~mo ? –—2Z012 [f

top @W . ~toP dl

j?jb.ttom . J%ottom dl
}

. (2)

+ Sbottom 1
If the currents for an infinitely thin conductor are used in the

above equation, then the integral will become singular. The

Lewin/Vainshtein philosophy says that instead of evaluating

the integral out to the edges (where it is singular), the limits

of this integral must be taken at some distance just before the

edge (the stopping distance A). Therefore, (2) is written as

[s%–7mo ~ –& CA Et”p . ~t”~ dl

]}

(3)
+ ~C& Eb”tt”m . J% OttOm d~

TABLE I
NUMERICAL RESULTS FOR THE STOPPINGDISTANCE FOR 90° AND 45° EDGES

&

0.03

0.04

0.05

0.06

0.10

0.14

0.25

0.50

0.64

0.71

0.79

0.87

0.94

1.0

1.07

1.12

1.15

1.22

1.32

1.5C

1.63

L
1.73

90°

9.18

9.18

9.19

9.19

9.25

9.45

11.76

33.97

61.90

81.32

108.83

138.42

169.39

200.50

235.98

258.21

270.22

299.73

324.12

329.88

312.74

293.30

45”

6.57

6.57

6.57

6.58

6.62

6.77

8.43

26.72

49.41

65.51

89.23

115.75

144.36

173.95

209.06

232.17

245.19

279.65

314.30

342.89

339.00

326.77

1.87

2.00

2.18

2.29

2.51

2.76

3.00

3.55

4.00

4.53

4.74

5.0

6.0

7.0

8.0

9.0

9.49

10.49

12.25

13.0

14.0

16.0

90°

266.73

244.95

221.57

210.25

200.43

189.28

178.57

170.73

168,50

171.59

172.81

174!33

185.89

193.43

195.96

196.58

196.94

198.36

203.04

205.58

209.24

217.25

45”

306.15

288.35

271.18

265.33

264.15

274.11

288.74

317.89

327.08

327.42

326.99

327.01

336.93

357.86

383.06

410.96

426.04

461.40

543.07

587.90

659.63

862.14
—

where CA is the contour of the conducting strip defined to a

distance just before the edge. For a CPW line, ‘CA is defined

by the following

~. ‘~;+’~:.

where a, b, and A are defined in Fig. 2. A

LewinfVainshtein stopping distance and was

is the modified

determined nu-

merically in [25] for a wide range of strip thicknesses versus

skin depths (~) for both a 90° and 45° edge (Table I).

In [25] and [26], it was shown that with an asymptotic tech-

nique, a generalized transfer impedance boundary condition

that relates the tangential E fields on the top and bottom sides

of the strips to the currents on the top and bottom sides of the

strips could be given by

where

dz, = –j ‘0 cot (I@)
6.—j%

/

.& < –j ~“ Csc(kct)
Ec —j%



HOLLOWAY AND KUESTER QUASI-CLOSED FORM EXPRESSION FOR CONDUCTOR LOSS OF CPW LINES 2697

and kc, oC, and e. are the wave number, the conductivity, and

the permittivity of the conductor, respectively.

The final goal of this analysis was to obtain the attenuation

constant of a CPW line given by

am = Re(~w – Tin.).

The first term in the boundary condition given in (4) can be

neglected because it is a purely imaginary number and will

contribute nothing to the power loss. With the exception of the

term jw~Ot/2, this equation is equivalent to the generalized

transfer impedance boundary condition given by Horton [6],

The extra term reflects the extrapolation of the asymptotic

solution from points on the actual conductor surface (y =

+t/2) to the fictitious half-plane y = O (see [25] and [26] for

more details).

Instead of working with both the top and bottom currents, it

is preferable to express the top and bottom currents as one-half

the total current (~), plus or minus a difference current (6~)

Jop

J%ottom : j;;:;}. (5)

If (4) and (5) are substituted into (3), the following is

obtained

‘Ym – 7mo

}N “L:mSc.(%)‘z+ “;>:m.Lo(-) dl “ ‘6)—
Note that the second integral can be extended over all of CO

(including the edge) because the integral is not singular at the

edges.

The real part of (6) represents the attenuation constant

of the CPW line. For quasi–TEM CPW lines (i.e., when

the dimensions of the gaps and of the center conductor are

small compared to a wavelength), the current distribution on

the strips is governed by a magnetostatic problem and is

independent of any dielectric that is present. The top and

bottom currents for this case are identical and 6J can be

neglected. Thus, for a quasi–TEM CPW line, the attenuation

constant reduces to the following

J2
a m +&E~cA (T) dl (7)

where J is the current density on the planar circuit, and R.~

is the resistance in the modified Horton impedance boundary

condition discussed in [25] and [26] and given by

R.n = wpct Im
(

Cot(kct) + Csc(kct)

kct )
(8)

If the current distribution (J) of a planar circuit is known,

then the attenuation constant for that structure can be deter-

mined through (7). Equation (7) was used in [25] to determine

the conductor loss for a microstrip line. Here, the attenuation

constant given in (7) will be employed to determine the loss
for CPW lines. The current distribution for the CPW structure

shown in Fig. 2 is given in [16]. On the central strip

J = /(.2 –Z:)(bz –az)
; Ixl<a (9)

where

A=— 2;[k) ; k=;

and K(k) is the elliptic integral of the first kind. On the ground

planes

J=–
<(z’ –G:)(Z’ –b’)

; Iy] > b. (lo)

The characteristic impedance for a CPW line is

~ = (0 K(w)

0 4- K(k)

where R = {~. If h >> b (where h is the distance to

the bottom ground plane of the CPW line), then ~.ff can be

approximated by

%.+1
fseff = ~ .

Once the current distribution given above is substituted into

(7), the following is obtained

The integrals are elementary and give

If A is small compared to a, b, and (b – a), then

R.mb2
a H 16zOKz(k)(b2 – a2)

‘{W=)+N%+)} ’13)
This result can qualitatively be compared to some results

in the literature. Owyang and Wu [16] analyzed the loss of

a CPW structure with an air dielectric, G. = 1. To check

our results with [16], the Lewin/Vainshtein value for A (high

frequency limit) was used for a rectangular edge

so

O!LV ~ 16’.a~fi2-a2){+[”+1n(=)l
}+~[m+ln(w)]} “

(14)

This is exactly twice (36) in [16]; we believe this is due to an

error or misprint in [16]. Comparisons in Section III suggest

that our expression is correct.

III. COMPARISON TO EXPERIMENTAL AND OTHER RESULTS

The loss predicted by (13) can be compared both to ex-

perimental results and to full numerical results. Fig. 3 shows

results obtained from equation (13) for a CPW structure for

a wide frequency range with t = 3.0 pm, a = 5 ~m, b =
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Fig. 3. Comparison of predicted loss with Heinrichs theory for a CPW line
with t= 3.0 pm, a = 5 pm, b = 25 #m, .s, = 12.9, and CC = 3.0. 107.

1.@@-

~lJLI [ LrIme and Mark e Meeeurernen ts
— l-h le I.lork

@.80- ‘------- Th LO Mork u Lth 1+ Lnr tch”o Z.
~’rhle Nor+ .Lth mdlfled Z,

‘? 0“6%

~

= 0.40-

8

::L______
1 10

f ( GHz)

Fig. 4. Comparison of predicted loss with experimental values for a CPW

line with t = 1.61 pm, a = 35.6 ~m, b = 84.6 #m, C. = 12.9, and UC =
3.602. 10T.

25 flm, a, = 3.0. 107, Also plotted on this figure are results

Heinrich [5] obtained using a mode-matching technique, The

two different theories correlate very well.

Fig. 4 shows results for a CPW structure with t = 1.61

pm, a = 35.6 #m, b = 84.6 #m, OC = 3.602 . 107, and

ET = 12.9. Also shown are the experimental values that

Williams and Marks [27] obtained for the same structure. This

curve shows excellent agreement with the experimental results

except for very low frequency values ~ < 0.5 GHz. This is

explained by noting that the characteristic impedance used in

(13) is not valid for low frequency. In this analysis we have

assumed that the characteristic impedance obtained is that of

a pure TEM mode. At the low frequencies, fields penetrate

significantly into the conductors, and the mode is no longer

close to that when the conductors are perfect. By modifying the

characteristic impedance (20), the low frequency discrepancy

can be improved.

Williams and Marks [27] supplied us with characteristic im-

pedances that were obtained from the Heinrich mode matching

code. These values of Zo were used in (13), and the results

3.00
1

2.50 II

II — Th 1s uork
~Gh Lone et al.

~ 2sfa0 *Gupta et al.

“:b
6.00 10.00

t (#m)

Fig. 5. Variations of loss as a function of conductor thickness with a = 35.6
pm, b = 84.6 pm, .s, = 12.9, and UC = 3.602. 107.

are shown in Fig. 4. The low-frequency results now correlate

well with the experimental results. However, the goal here is

to have a theory that does not require numerically determined

characteristic impedance for the structure.

The expression given in (13) is valid as long as the fre-

quency is not too low. The problem at low frequency is that

the characteristic impedance is perturbed by the presence of the

magnetic fields that penetrate the conductor. In [26] and [28],

closed-form corrections to the characteristic impedance for a

microstrip and CPW line were developed. These corrections

are based on the attenuation constants derived in this paper and

in [25]. From [26], it is shown that the attenuation constant

for a corrected characteristic impedance is given by

(amRe —

‘+
‘“ 1 + 1 + ~07mo )

(15)

where

*=zs+zm H)J2dl

4 CA 7

or

F=

(2, + Zn)b2

{Y%3+~’n(%3}16K2(k)(b2 – a2) a

and ~~o = jko
4

~. Z, and Zm are defined earlier.

Fig. 4 compares the loss predicted by this equation with

the experimental values obtained in [27]. From this figure it

is seen that for the high-frequency end this new, modified

value for a correlates well with the previous prediction. At

low frequencies, (15) compensates for the incorrect impedance

used in (13).

Using the same CPW line as was used in the last example

(a= 35.6 ~m, b = 84.6 pm, o. = 3.602.107, and e. = 12.9)

the effect of conductor thickness on loss was investigated.

Fig. 5 shows results for this CPW structure for a frequency of

20 GHz and for various values oft (the conductor thickness).
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Flg. 6. Comparison of predicted loss with other expressions found in the

literature for aCPW line with t = 3.0 pm, a = 5 pm, b= 25 pm, C. =
12.9, andac = 3.0. 107.

As expected, the loss increases very rapidly once the conductor

thickness becomes less than about 26-36 (6 = 0.593 Mm).

Also shown in this figure are results from two different

closed form expressions for the loss found in the literature.

The first expression is based on a wall loss perturbation

procedure in which the current density on a conductor with

finite thickness (obtained from conformal mapping) is utilized.

This expression was first introduced by Owyang and Wu [16]

and then later modified by Ghione, Naldi, and Zich [19], and

can also be found in Wadell [29]. The second expression is

based on the Wheeler’s incremental inductance rule and is

given in Gupta, Garg, and Bahl [30].

Figs. 5 and 6 show a comparison of these two expressions

to our results along with numerical results. These figures

show that the results based on the Ghione, Naldi, and Zich

[19] procedure predict losses differing by 12-30% from those

obtained from both our model and numerical results, Even

more deviation is seen when ~ is small. This deviation is due

in part to the fact that the Leontovich surface impedance is

no longer valid for small ~, nor is it valid in the vicinity of

the edge.

Figs. 5 and 6 also illustrate that the results based on

Wheeler’s incremental inductance rule (see Gupta et cd. [30])

deviate from our results as well as from the results based on

the Owyang and Wu technique. The drastic deviation in the

results obtained from Wheeler’s rule is probably traceable to

the derivatives of 20 needed in the Gupta ef al. [30] formula.

The formulas for 20 are accurate to a few percent, but this

assertion says nothing about the accuracy of derivatives of 20,

and therefore caution must be used when employing values

of ~ computed in this way.

IV. EDGE SHAPE EFFECTS ON CONDUCTOR Loss

The fabrication process used in manufacturing this structure

can result in edge profiles other than 90°. Various different

edge profiles could be analyzed to determine how conductor
loss is affected by edge shape. By considering a 45° edge as a

0.40]

/
/

/

Fig. 7. Comparison of the predicted loss for both 90° and 45° edges with
t = 3 pm, a = 5 pm, b = 25 #m, ●, = 12,9, and a, = 3.0. 107.

Fig. 8. Comparison of the predicted loss for both 90° and 45° edges with

t = 1.61 /m, a = 35.6 #m, b = 84.6 pm, c, = 12.9, and a. = 3.602 107.

worst case scenario, the change in loss due to edge shapes can

be gauged. Figs. 7 and 8 show the results of two CPW lines

with 45° edges on both the central and outer strips. The loss

for the 45° edge is not significantly more than the loss of the

90° edge when t = 1.61 ~m (Fig. 8). When t= 3 ~m. there

is about a 7Yc increase in the loss when f = 40 GHz (Fig. 7).

Therefore, for thick CPW lines, the additional loss associated

with the edge may indeed be significant.

V. RANGE OF VALIDITY OF THE Loss EXPRESSION

In this section we will discuss the scenarios where the

expression presented here is valid. We begin by discussing the

effect of thickness, edge shape, and skin depth. In developing

the stopping distance (A), an asymptotic expansion of the

fields local to the edge was used to accurately characterize

the power loss in the vicinity of an arbitrarily shaped edge.

This results in a stopping distance, and, more important, in

a loss expression, that is valid for any strip thickness to skin
depthratio(f).The stopping distance is also valid for any

edge shape one chooses to analyze. In this paper we show

results for both a 90° and a 45° edge.
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Fig.9. Variation of loss as a function of center conductor width witht =

3.O~m,b= 150 flm, e. = 12.8, andoc = 5.882. 107. The dashed curve

shows our results, andthesolid curve is from Kitazawaand Itoh [17].

As long as the frequency is not too low (so that the

quasi–TEM mode 20 can be used), then (13) does an ex-

cellent job of predicting the loss of a CPW line. At the low

frequencies, the magnetic field penetrates the conductors, and

this causes the quasi–TEM mode 20 to be invalid. Once this

occurs, a correction to ZO is needed. Such a correction has

been applied here [see (15)], and good agreement for the loss

at low frequencies was shown.

The main limitation of the work presented here is the

manner in which the stopping distance was derived. In deriving

the stopping distance ([25] and [26]) it was assumed that the

edge of the strip was isolated from other strip edges. Therefore,

if the center conductor of a CPW line is too narrow or if the

gap between the center and outer conductor is too narrow,

then the validity of the stopping distance and the expression

for loss are in question.

This point can be illustrated by investigating the loss of

a CPW line with a fixed value of b (Fig. 1) and various

values of a (the half-width of the center conductor). In Fig, 9,

we compare our results to results obtained from a so-called

hybrid-mode formulation [17] for various values of a, This

figure shows that when either a approaches b (~ - .1, in

this example) or when a gets very small (~ ~ .3, in this

example), our results deviate from the MOM results by only

5–10%, which is quite good considering the assumptions made

in deriving the stopping distance,

In principle, it should be possible to obtain a new stopping

distance (A), valid for closely spaced edges by modifying the

approach of [25]. This will be the topic of future work.

VI. CONCLUSION

In this paper, we have developed a closed-form expression

for the conductor loss of a CPW line. This expression is valid

for any strip thickness-to-skin depth ratio and any edge shape.

Results from this expression have been compared to both

experimental results and to results obtained from a full nu-

merical approach, and excellent correlation was demonstrated.

Comparisons to other expressions for the conductor loss,

obtained from either Wheeler’s rule or from a Perturbation

procedure, have been made and the limitation of these other

expressions is given,

The expression presented here is based on knowing the

characteristic impedance of the structure being analyzed. Using

a TEM assumption for Zo gives very good results for most

frequencies. Once the frequency becomes very low, correc-

tions to Zo are needed to take into account the magnetic fields

penetrating the conductors. Such an expression is given here

and is shown to correlate well with experimental data.

We have investigated the effects of different edge shapes on

the conductor loss of a CPW line. It was shown that for large

~, the additional power loss associated with 45° may indeed

be significant.
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