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A Quasi-Closed Form Expression for the Conductor

Loss of CPW Lines, with an Investigation
of Edge Shape Effects

Christopher L. Holloway, Member, IEEE, and Edward F. Kuester, Member, IEEE

Abstract— In previous work, we used a matched asymptotic
technique to investigate the fields near an edge of a finitely
conducting strip with nonzero thickness. It was demonstrated
that with this asymptotic solution of the fields, the power loss
in the region local to the edge could be determined accurately. In
this paper, we will show how the accurate representation of the
power loss can be used to obtain a closed form expression for the
attenuation constant due to conductor loss of coplanar waveguide
(CPW) structures. This expression is valid for an arbitrarily
shaped edge and any conductor thickness. Results obtained with
this expression are compared to and closely agree with both
experimental results and other techniques found in the literature.
We also investigated conductors with different edge shapes (45°
and 90° edges) to explore their effect on the attenuation constant
(or loss) of CPW structures.

1. INTRODUCTION

ARIOUS TECHNIQUES have been used to calculate

the conductor loss in monolithic microwave integrated
circuits (MIMIC’s) [1]-{20]. These techniques range from
quasi-analytical, like Wheeler’s incremental inductance rule, to
full numerical approaches, such as mode matching, method of
moments (MOM), and finite elements. These numerical tech-
niques are capable of high accuracy but are computationally
intensive and hence do not lend themselves to ready use in
design. Instead, closed-form expressions are desirable for this
purpose.

Traditionally, Wheeler’s incremental inductance rule [1]
has been used to evaluate the attenuation constant of pla-
nar microwave transmission lines, as in the work of Pucel,
Massé, and Hartwig [2] for microstrip. For a wide range of
applications, this technique works well. However, if the ratio
% is small (where § is the skin depth and ¢ is the thickness
of the conductor) or comparable to 1, then the Wheeler rule
breaks down and gives poor results. This is traceable to the
fact that the Leontovich surface impedance boundary condition
[21}, on which the validity of the Wheeler rule depends, is no
longer valid. Moreover, if the edges of the strip conductor are
not exactly rectangular in shape, but are instead trapezoids
with 60° or 70° angles (which often occurs when common
fabrication techniques are utilized), then the results of Pucel
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Fig. 1. Geometry of a CPW line.
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Fig. 2. Geometry of an infinitely thin CPW line.

et al. (obtained assuming a rectangular edge) are also no longer
valid. In this case, full numerical techniques are currently the
only option for computing the loss.

Consider the CPW (coplanar waveguide) line shown in
Fig. 1. It is tempting to determine the conductor loss of this
line by using standard perturbation methods for computing
wall loss. Assuming that the strips are infinitely thin, an
approximate current density on the strips could be obtained
and then used to get an expression for the attenuation constant.
This expression involves an integral over the top and bottom
portions of the strip conductors (Fig. 2)

7 Lo ()
- dl 1§
ZZO top+bottom 1 (

where J is the approximate current density on the strip, I is
the total current on the center conductor, R, is the surface
resistance of the strip conductor, and Z, is the characteristic
impedance of the CPW. However, because the current on an
infinitely thin, perfectly conducting strip diverges as 1//7
(where r is the distance from the nearest edge), the integration
of |J|? would result in a logarithmically divergent integral and
this result would be useless.

Lewin [22] and Vainshtein and Zhurav [23] indepen-
dently developed a method to avoid this difficulty. In the
Lewin/Vainshtein procedure, the loss is approximated by
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carrying out the integration in (1) not to the edges, but to some
distance away from the edges of the strip. This distance is
chosen so that the resulting power loss near an edge calculated
in this way agrees with that of the actual edge. The value of
this stopping distance is a function only of the local edge
geometry: the strip thickness and the shape of the edge.

In the work by Lewin/Vainshtein and in later work by Bar-
sotti, Kuester, and Dunn [24], the stopping distance (A) was
determined by evaluating the power loss (with the Leontovich
approximation) from an integration of the current distribution
(J corresponds to a perfectly conducting strip of the actual
edge shape and nonzero thickness) around the contour of the
edge. This was then equated to the power loss found from
the stopping distance method using the current distribution
of a zero thickness perfect conductor. The problem with this
approach (which determines the ‘‘standard’’ Lewin/Vainshtein
stopping distance) is that because it relies on the Leontovich
approximation, it is valid only for skin depths very small
compared to strip thickness (that is, at very high frequencies).

In previous work [25] and [26], it has been demonstrated
that with a matched-asymptotic expansion technique, a modi-
fied Lewin/Vainshtein stopping distance (A) can be obtained.
This stopping distance can be used for any ratio of strip
thickness to skin depth and for any given edge shape, if proper
modification to the impedance condition at the strip is made.
It was also shown [25] and [26], that once A is determined
for a given edge shape and as a function of ¢/8, a closed-form
expression for the conductor loss of a microstrip line could
be obtained.

In this investigation, we extend the previous work by
deriving a quasi-closed form expression for the attenuation
constant of a CPW line. This paper is organized as follows:
after the introduction, Section II presents a derivation of
the attenuation constant. There, we compare our results to
experimental results, numerical results, and to results based on
wall loss perturbation approaches. In Section IV, the effect of
different edge shapes on the conductor loss is investigated. The
last section discusses the ranges within which our quasi-closed
form expression is valid.

II. DERIVATION OF THE QUASI-CLOSED
FORM EXPRESSION FOR CONDUCTOR LOSS

In [25] and [26], it was demonstrated that with a standard
wall-loss perturbation analysis, the change in the propagation
constant due to conducting walls for a planar circuit is simply

_2zi12 Utop Etev. Jtop d] )
+fb [Ebottom | Jbottom dl] - @
ottom

If the currents for an infinitely thin conductor are used in the
above equation, then the integral will become singular. The
Lewin/Vainshtein philosophy says that instead of evaluating
the integral out to the edges (where it is singular), the limits
of this integral must be taken at some distance just before the
edge (the stopping distance A). Therefore, (2) is written as

Ym — Ymo = _é—Zil,T I:fCA E'top . jtoP dl (3)
+fCA Ebottom . jbottom dl:l

Ym ™ Ymo
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TABLE I
NUMERICAL RESULTS FOR THE STOPPING DISTANCE FOR 90° AND 45° EDGES
t i , 5
£ 90° 45° 2 90° 45°
0.03 | 9.18 6.57 1.87 | 266.73 | 306.15
0.04 | 9.18 6.57 || 2.00 | 244.95 | 288.35
0.05| 9.19 6.57 2.18 | 221.57 | 271.18
0.06 | 9.19 6.58 2.29 | 210.25 | 265.33
0.10 | 9.25 6.62 | 2.51 |200.43 | 264.15
0.14| 945 6.77 | 2.76 |189.28 | 274.11
0.25 | 11.76 | 843 3.00 | 178.57 | 288.74
0.50 | 33.97 | 26.72 }| 3.55 | 170.73 | 317.89
0.64 | 61.90 | 49.41 || 4.00 | 168.50 | 327.08
0.71 | 81.32 | 65.51 4.53 | 171.59 | 327.42
0.79 | 108.83 | 89.23 | 4.74 | 172.81 | 326.99
0.87 | 138.42 | 115,75 || 5.0 | 174.33 | 327.01
0.94 { 169.39 | 144.36 || 6.0 | 185.89 | 336.93
1.0 | 200.50 { 173.95 | 7.0 | 193.43 | 357.86
1.07 | 235.98 | 209.06 | 8.0 |195.96 | 383.06
1.12 | 258.21 | 232.17 [ 9.0 |196.58 | 410.96
1.15 § 270.22 | 245.19 || 9.49 | 196.94 | 426.04
1.22 1 299.73 | 279.65 || 10.49 | 198.36 | 461.40
1.32 | 324.12 | 314.30 || 12.25 | 203.04 | 543.07
1.50 | 329.88 | 342.80 || 13.0 | 205.58 | 587.90
1.63 | 312.74 | 339.00 || 14.0 | 209.24 | 659.63
| 1.73 | 293.30 | 326.77 || 16.0 | 217.25 | 862.14

where Cp is the contour of the conducting strip defined to a
distance just before the edge. For a CPW line, Cx is defined

by the following
a—A oS}
IR
Ca —atA b4+A

where a, b, and A are defined in Fig. 2. A is the modified
Lewin/Vainshtein stopping distance and was determined nu-
merically in [25] for a wide range of strip thicknesses versus
skin depths (%) for both a 90° and 45° edge (Table I).

In [25] and [26], it was shown that with an asymptotic tech-
nique, a generalized transfer impedance boundary condition
that relates the tangential E fields on the top and bottom sides
of the strips to the currents on the top and bottom sides of the
strips could be given by

B = (jend + Z) T 4 T
Eanrftom = (jwﬂo% -+ Zs)jbottom + Zp Jtop

where

B

ZS =-J E;——:—i’—j—;gcot(kct)
.| Ho

Zm = =3 ;c_—j%_—ccsc(kct)
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and k., 0., and ¢, are the wave number, the conductivity, and
the permittivity of the conductor, respectively.

The final goal of this analysis was to obtain the attenuation
constant of a CPW line given by

am = Re(Ym — Ymo)-

The first term in the boundary condition given in (4) can be
neglected because it is a purely imaginary number and will
contribute nothing to the power loss. With the exception of the
term jwpy,t/2, this equation is equivalent to the generalized
transfer impedance boundary condition given by Horton [6].
The extra term reflects the extrapolation of the asymptotic
solution from points on the actual conductor surface (y =
+¢/2) to the fictitious half-plane y = 0 (see [25] and [26] for
more details).

Instead of working with both the top and bottom currents, it
is preferable to express the top and bottom currents as one-half
the total current (J), plus or minus a difference current (6.J)

Jtoo = 1j_4§7J
Lfbottom _z_j+ 5T }

If (4) and (5) are substituted into (3), the following is
obtained

Ym — Ymo o o 6

o Ll [0 (%) di+ 2l [ (MI'ZM) dl } ©
Note that the second integral can be extended over all of C,
(including the edge) because the integral is not singular at the
edges.

The real part of (6) represents the attenuation constant
of the CPW line. For quasi-TEM CPW lines (i.e., when
the dimensions of the gaps and of the center conductor are
small compared to a wavelength), the current distribution on
the strips is governed by a magnetostatic problem and is
independent of any dielectric that is present. The top and
bottom currents for this case are identical and 6J can be
neglected. Thus, for a quasi-TEM CPW line, the attenuation
constant reduces to the following

&)

2
o Jou (7)" dl Y

where .J is the current density on the planar circuit, and R,
is the resistance in the modified Horton impedance boundary
condition discussed in [25] and [26] and given by

cot(kct) + csc(ket)
ket '

o X~

Rem = wpetIm ( ®

If the current distribution (J) of a planar circuit is known,
then the attenuation constant for that structure can be deter-
mined through (7). Equation (7) was used in [25] to determine
the conductor loss for a microstrip line. Here, the attenuation
constant given in (7) will be employed to determine the loss
for CPW lines. The current distribution for the CPW structure
shown in Fig. 2 is given in [16]. On the central strip

A,
J= (a2 —x2) (b2 —2) ) le <a ©)
where
A= 21%@) i k=%
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and K (k) is the elliptic integral of the first kind. On the ground
planes

J=—-—o 4
(22—a2)(2?—-b7) '

The characteristic impedance for a CPW line is

ly| > b. (10)

G K(K)
4«/5eff K(k‘)
where k' = v/1— k2. If h >> b (where h is the distance to

the bottom ground plane of the CPW line), then e.¢; can be
approximated by

er‘+1
Ceff =5

Once the current distribution given above is substituted into
(7), the following is obtained

RE(Z5+Zm2{ 3 a—A A2 dx

4z, 7 Jo (aZ—a?)(bZ—27)
g [ A% dx ) (11)
+47 fora szm}

The integrals are elementary and give

a

~ Ry b? b—at+A
a o~ m{%m[(%- )(b—l—:—tA)]
+im[(2+1) (5222)]}

12)
If A is small compared to a, b, and (b — a), then
o Ry b?
T 16Z,K2(k)(b% — a?)
1 2ab—a 1 26b—a
‘{aln(zm) * zln(zsm)}' -

This result can qualitatively be compared to some results
in the literature, Owyang and Wu [16] analyzed the loss of
a CPW structure with an air dielectric, ¢, = 1. To check
our results with [16], the Lewin/Vainshtein value for A (high
frequency limit) was used for a rectangular edge

t T
A = =
Lv 4re™

2mwe™

SO

aw = s+ (5]
+lr+ ()]}
(14)

This is exactly twice (36) in [16]; we believe this is due to an
error or misprint in [16]. Comparisons in Section III suggest
that our expression is correct.

III. COMPARISON TO EXPERIMENTAL AND OTHER RESULTS

The loss predicted by (13) can be compared both to ex-
perimental results and to full numerical results. Fig. 3 shows
results obtained from equation (13) for a CPW structure for
a wide frequency range with ¢ = 3.0 ym, ¢ = 5 pm, b =
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Fig. 3. Comparison of predicted loss with Heinrich’s theory for a CPW line
with ¢ = 3.0 pm, a = 5 um, b = 25 pm, ¢ = 129, and 6. = 3.0 - 107.
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Fig. 4. Comparison of predicted loss with experimental values for a CPW
line with ¢ = 1.61 ym, ¢ = 35.6 um, b = 84.6 um, e, = 129, and 0. =
3.602 - 107.

1@

25 pm, 0. = 3.0 - 107, Also plotted on this figure are results
Heinrich [5] obtained using a mode-matching technique. The
two different theories correlate very well.

Fig. 4 shows results for a CPW structure with £ = 1.61
pm, a = 35.6 ym, b = 84.6 um, o, = 3.602 - 107, and
€~ = 12.9. Also shown are the experimental values that
Williams and Marks [27] obtained for the same structure. This
curve shows excellent agreement with the experimental results
except for very low frequency values f < 0.5 GHz. This is
explained by noting that the characteristic impedance used in
(13) is not valid for low frequency. In this analysis we have
assumed that the characteristic impedance obtained is that of
a pure TEM mode. At the low frequencies, fields penetrate
significantly into the conductors, and the mode is no longer
close to that when the conductors are perfect. By modifying the
characteristic impedance (Z,), the low frequency discrepancy
can be improved.

Williams and Marks [27] supplied us with characteristic im-
pedances that were obtained from the Heinrich mode matching
code. These values of Z, were used in (13), and the results
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Fig. 5. Variations of loss as a function of conductor thickness with a = 35.6
pm, b = 84.6 pm, &, = 12.9, and 6. = 3.602 - 107,

are shown in Fig. 4. The low-frequency results now correlate
well with the experimental results. However, the goal here is
to have a theory that does not require numerically determined
characteristic impedance for the structure.

The expression given in (13) is valid as long as the fre-
quency is not too low. The problem at low frequency is that
the characteristic impedance is perturbed by the presence of the
magnetic fields that penetrate the conductor. In {26] and [28],
closed-form corrections to the characteristic impedance for a
microstrip and CPW line were developed. These corrections
are based on the attenuation constants derived in this paper and
in [25]. From [26], it is shown that the attenuation constant
for a corrected characteristic impedance is given by

F 2

a~Re| = (15)

Zo1+,/14 T

where
Zs+ Zom z
p o Zet dm / (Z) dl

1 Jo, \T
or
F=

(Ze+ Zn)V® f1, (2ab—a) 1 (2b—a
16K2(k) (02 —a2) \a \Ab+ta) b \Abta

and Ymo = jkoy/ &3, Z, and Z,, are defined earlier.

Fig. 4 compares the loss predicted by this equation with
the experimental values obtained in [27]. From this figure it
is seen that for the high-frequency end this new, modified
value for « correlates well with the previous prediction. At
low frequencies, (15) compensates for the incorrect impedance
used in (13).

Using the same CPW line as was used in the last example
(a = 35.6 yum, b = 84.6 ym, o, = 3.602 - 107, and ¢, = 12.9)
the effect of conductor thickness on loss was investigated.
Fig. 5 shows resuits for this CPW structure for a frequency of
20 GHz and for various values of ¢ (the conductor thickness).
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Fig. 6. Comparison of predicted loss with other expressions found in the
literature for a CPW line with t = 3.0 um, ¢ = 5 pm, b= 25 pm, & =
12.9, and o, = 3.0 - 10".

As expected, the loss increases very rapidly once the conductor
thickness becomes less than about 26-36 (6 = 0.593 pm).

Also shown in this figure are resuits from two different
closed form expressions for the loss found in the literature.
The first expression is based on a wall loss perturbation
procedure in which the current density on a conductor with
finite thickness (obtained from conformal mapping) is utilized.
This expression was first introduced by Owyang and Wu [16]
and then later modified by Ghione, Naldi, and Zich [19], and
can also be found in Wadell [29]. The second expression is
based on the Wheeler’s incremental inductance rule and is
given in Gupta, Garg, and Bahl [30].

Figs. 5 and 6 show a comparison of these two expressions
to our results along with numerical results. These figures
show that the results based on the Ghione, Naldi, and Zich
[19] procedure predict losses differing by 12-30% from those
obtained from both our model and numerical results. Even
more deviation is seen when % is small. This deviation is due
in part to the fact that the Leontovich surface impedance is
no longer valid for small —fg, nor is it valid in the vicinity of
the edge.

Figs. 5 and 6 also illustrate that the results based on
Wheeler’s incremental inductance rule (see Gupta er al. [30])
deviate from our results as well as from the results based on
the Owyang and Wu technique. The drastic deviation in the
results obtained from Wheeler’s rule is probably traceable to
the derivatives of Z, needed in the Gupta et al. [30] formula.
The formulas for Z, are accurate to a few percent, but this
assertion says nothing about the accuracy of derivatives of Z,,
and therefore caution must be used when employing values
of % computed in this way.

IV. EDGE SHAPE EFFECTS ON CONDUCTOR LOSS

The fabrication process used in manufacturing this structure
can result in edge profiles other than 90°. Various different
edge profiles could be analyzed to determine how conductor
loss is affected by edge shape. By considering a 45° edge as a
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Fig. 7. Comparison of the predicted loss for both 90° and 45° edges with
t=3 pum, ¢ =15 pum,b=25 pm, ¢, = 12,9, and 6. = 3.0- 107.
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Fig. 8. Comparison of the predicted loss for both 90° and 45° edges with
t = 1.61 um, a = 35.6 um, b = 84.6 um, e = 12.9, and o = 3.602- 107,

worst case scenario, the change in loss due to edge shapes can
be gauged. Figs. 7 and 8 show the results of two CPW lines
with 45° edges on both the central and outer strips. The loss
for the 45° edge is not significantly more than the loss of the
90° edge when ¢t = 1.61 um (Fig. 8). When ¢ = 3 pm., there
is about a 7% increase in the loss when f = 40 GHz (Fig. 7).
Therefore, for thick CPW lines, the additional loss associated
with the edge may indeed be significant.

V. RANGE OF VALIDITY OF THE LOSS EXPRESSION

In this section we will discuss the scenarios where the
expression presented here is valid. We begin by discussing the
effect of thickness, edge shape, and skin depth. In developing
the stopping distance (A), an asymptotic expansion of the
fields local to the edge was used to accurately characterize
the power loss in the vicinity of an arbitrarily shaped edge.
This results in a stopping distance, and, more important, in
a loss expression, that is valid for any strip thickness to skin
depth ratio (%). The stopping distance is also valid for any
edge shape one chooses to analyze. In this paper we show
results for both a 90° and a 45° edge.
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Fig. 9. Variation of loss as a function of center conductor width with ¢ =
3.0 pm, b = 150 pm, €, = 12.8, and o = 5.882 - 107. The dashed curve
shows our results, and the solid curve is from Kitazawa and Itoh [17].

As long as the frequency is not too low (so that the
quasi-TEM mode Z, can be used), then (13) does an ex-
cellent job of predicting the loss of a CPW line. At the low
frequencies, the magnetic field penetrates the conductors, and
this causes the quasi-TEM mode Z, to be invalid. Once this
occurs, a correction to 7, is needed. Such a correction has
been applied here [see (15)], and good agreement for the loss
at low frequencies was shown.

The main limitation of the work presented here is the
manner in which the stopping distance was derived. In deriving
the stopping distance ([25] and [26]) it was assumed that the
edge of the strip was isolated from other strip edges. Therefore,
if the center conductor of a CPW line is too narrow or if the
gap between the center and outer conductor is too narrow,
then the validity of the stopping distance and the expression
for loss are in question.

This point can be illustrated by investigating the loss of
a CPW line with a fixed value of b (Fig. 1) and various
values of ¢ (the half-width of the center conductor). In Fig. 9,
we compare our results to results obtained from a so-called
hybrid-mode formulation [17] for various values of a. This
figure shows that when either o approaches b (b_% — .1, in
this example) or when o gets very small (ﬁ — .3, in this
example), our results deviate from the MOM results by only
5-10%, which is quite good considering the assumptions made
in deriving the stopping distance.

In principle, it should be possible to obtain a new stopping
distance (A), valid for closely spaced edges by modifying the
approach of [25]. This will be the topic of future work.

V1. CONCLUSION

In this paper, we have developed a closed-form expression
for the conductor loss of a CPW line. This expression is valid
for any strip thickness-to-skin depth ratio and any edge shape.
Results from this expression have been compared to both
experimental results and to results obtained from a full nu-
merical approach, and excellent correlation was demonstrated.
Comparisons to other expressions for the conductor loss,
obtained from either Wheeler’s rule or from a perturbation
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procedure, have been made and the limitation of these other
expressions is given.

The expression presented here is based on knowing the
characteristic impedance of the structure being analyzed. Using
a TEM assumption for Z, gives very good results for most
frequencies. Once the frequency becomes very low, correc-
tions to Z, are needed to take into account the magnetic fields
penetrating the conductors. Such an expression is given here
and is shown to correlate well with experimental data.

We have investigated the effects of different edge shapes on
the conductor loss of a CPW line. It was shown that for large
%, the additional power loss associated with 45° may indeed
be significant.
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